If it's not what You are looking for type in the equation solver your own equation and let us solve it.
19x^2=13x
We move all terms to the left:
19x^2-(13x)=0
a = 19; b = -13; c = 0;
Δ = b2-4ac
Δ = -132-4·19·0
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-13)-13}{2*19}=\frac{0}{38} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-13)+13}{2*19}=\frac{26}{38} =13/19 $
| 19x^2=13x | | −12x+2=−9x+5 | | −12x+2=−9x+5 | | −12x+2=−9x+5 | | 5y−8=3y+4 | | 5y−8=3y+4 | | −12x+2=-9x+5− | | −12x+2=-9x+5− | | 19.5=0.5y | | 4r^2+2=0 | | -9+-2h=-15 | | -9+-2h=-15 | | -9+-2h=-15 | | 2c+43=50 | | 2c+43=50 | | 2c+43=50 | | 2c+43=50 | | 64+4x=29 | | 64+4x=29 | | -3b+11=8+9b | | (x+7)/(x+31)=3/7 | | -3b+11=8+9b | | (x+7)/(x+31)=3/7 | | (x+7)/(x+31)=3/7 | | -3b+11=8+9b | | -3b+11=8+9b | | 10d=8d-2 | | 10d=8d-2 | | 10=8d-2 | | 5=3q−4 | | 5=3q−4 | | 5=3q−4 |